Вариант № 35960

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задание № 1184
i

На ко­ор­ди­нат­ной пря­мой от­ме­че­ны точки А, В, С, D, E. Если рас­сто­я­ние между B и D равно  дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби , то ближе дру­гих к точке с ко­ор­ди­на­той 1,01 рас­по­ло­же­на точка:



2
Задание № 272
i

На клет­ча­той бу­ма­ге с клет­ка­ми раз­ме­ром 1 см х 1 см изоб­ражён па­рал­ле­ло­грамм. Най­ди­те его пло­щадь в квад­рат­ных сан­ти­мет­рах.



3
Задание № 1030
i

На ри­сун­ке изоб­ра­жен гра­фик дви­же­ния ав­то­мо­би­ля из пунк­та O в пункт C. Ско­рость дви­же­ния ав­то­мо­би­ля на участ­ке BC (в км/ч) равна:



4
Задание № 1301
i

Най­ди­те гра­дус­ную меру угла, смеж­но­го с углом, ра­ди­ан­ная мера ко­то­ро­го равна  дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 15 конец дроби



5
Задание № 815
i

Вы­чис­ли­те  дробь: чис­ли­тель: 2148 умно­жить на 0,01 минус 5, зна­ме­на­тель: 0,34 плюс 1,26 конец дроби .



6
Задание № 486
i

Число 213 яв­ля­ет­ся чле­ном ариф­ме­ти­че­ской про­грес­сии 3, 8, 13, 18, ... Ука­жи­те его номер.



7
Задание № 1034
i

Зна­че­ние вы­ра­же­ния 7 ко­си­нус в квад­ра­те 34 гра­ду­сов плюс 10 синус 30 гра­ду­сов плюс 7 синус в квад­ра­те 34 гра­ду­сов равно:



8
Задание № 578
i

Рас­по­ло­жи­те числа 1,66; дробь: чис­ли­тель: 12, зна­ме­на­тель: 7 конец дроби ; 1, левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка в по­ряд­ке воз­рас­та­ния.



9
Задание № 999
i

Най­ди­те зна­че­ние вы­ра­же­ния НОК(9, 15, 45)+НОД(24, 40).



10
Задание № 1193
i

Зна­че­ние вы­ра­же­ния  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 9 левая круг­лая скоб­ка 1 минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в сте­пе­ни 4 конец ар­гу­мен­та равно:



11
Задание № 611
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 11 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс 3 ко­рень из 3 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс ко­рень из 3 конец дроби минус ко­рень из: на­ча­ло ар­гу­мен­та: 33 конец ар­гу­мен­та плюс дробь: чис­ли­тель: 16 ко­рень из 3 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та минус ко­рень из 3 конец дроби



12
Задание № 1309
i

В тре­уголь­ни­ке ABC \angle ACB = 90 гра­ду­сов, AB=8, \ctg \angle BAC = ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та . Най­ди­те длину сто­ро­ны CB.



13
Задание № 1100
i

Ку­пи­ли c ручек по цене 1 руб. 2 коп. за штуку и 215 тет­ра­дей по цене x коп. за штуку. Со­ставь­те вы­ра­же­ние, ко­то­рое опре­де­ля­ет, сколь­ко руб­лей стоит по­куп­ка.



14
Задание № 464
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 27 в сте­пе­ни x плюс 9 в сте­пе­ни x минус 20 умно­жить на 3 в сте­пе­ни x , зна­ме­на­тель: 3 в сте­пе­ни x левая круг­лая скоб­ка 3 в сте­пе­ни x минус 4 пра­вая круг­лая скоб­ка конец дроби .



15
Задание № 675
i

Стро­и­тель­ная бри­га­да пла­ни­ру­ет за­ка­зать фун­да­мент­ные блоки у од­но­го из трех по­став­щи­ков. Сто­и­мость бло­ков и их до­став­ки ука­за­на в таб­ли­це. При по­куп­ке ка­ко­го ко­ли­че­ства бло­ков са­мы­ми вы­год­ны­ми будут усло­вия вто­ро­го по­став­щи­ка?

 

По­став­щикСто­и­мость

фун­да­мент­ных бло­ков
(тыс. руб. за 1 шт.)

Сто­и­мость до­став­ки

фун­да­мент­ных бло­ков
(тыс. руб. за весь заказ)

12101700
2230950
3285бес­плат­но


16
Задание № 286
i

В ромб пло­ща­дью 16 ко­рень из 5 впи­сан круг пло­ща­дью 5π. Сто­ро­на ромба равна:



17
Задание № 587
i

Сумма наи­боль­ше­го и наи­мень­ше­го зна­че­ний функ­ции

y= левая круг­лая скоб­ка 2 синус 2x плюс 2 ко­си­нус 2x пра­вая круг­лая скоб­ка в квад­ра­те

равна:



18
Задание № 768
i

Сумма кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 2x плюс 1 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та =4 минус x равна (равен):



19
Задание № 1347
i

Для на­ча­ла каж­до­го из пред­ло­же­ний под­бе­ри­те его окон­ча­ние 1−5 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

На­ча­ло

A)  Зна­че­ние вы­ра­же­ния 3 в сте­пе­ни 0 :3 в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка равно:

Б)  Зна­че­ние вы­ра­же­ния  минус 3 в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка умно­жить на дробь: чис­ли­тель: 1, зна­ме­на­тель: 27 конец дроби равно:

В)  Зна­че­ние вы­ра­же­ния 7 в сте­пе­ни 4 : левая круг­лая скоб­ка минус 21 пра­вая круг­лая скоб­ка в сте­пе­ни 4 равно:

Окон­ча­ние

1)  9

2)  −81

3)   дробь: чис­ли­тель: 1, зна­ме­на­тель: 81 конец дроби

4)   минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 81 конец дроби

5)  81

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

20
Задание № 710
i

Най­ди­те про­из­ве­де­ние боль­ше­го корня на ко­ли­че­ство кор­ней урав­не­ния  дробь: чис­ли­тель: 15, зна­ме­на­тель: x в квад­ра­те минус 6x плюс 13 конец дроби минус x в квад­ра­те плюс 6x=11.


Ответ:

21
Задание № 711
i

В окруж­ность ра­ди­у­сом 4 впи­сан тре­уголь­ник, длины двух сто­рон ко­то­ро­го равны 6 и 4. Най­ди­те длину вы­со­ты тре­уголь­ни­ка, про­ве­ден­ной к его тре­тьей сто­ро­не.


Ответ:

22
Задание № 652
i

Пусть (x;y)  — це­ло­чис­лен­ное ре­ше­ние си­сте­мы урав­не­ний

 си­сте­ма вы­ра­же­ний 3y минус x= минус 11,4y в квад­ра­те плюс 4xy плюс x в квад­ра­те =16. конец си­сте­мы .

Най­ди­те сумму x+y.


Ответ:

23
Задание № 743
i

Най­ди­те сумму (в гра­ду­сах) наи­мень­ше­го по­ло­жи­тель­но­го и наи­боль­ше­го от­ри­ца­тель­но­го кор­ней урав­не­ния  синус 2x минус ко­си­нус x=0.


Ответ:

24
Задание № 714
i

Три числа со­став­ля­ют гео­мет­ри­че­скую про­грес­сию, в ко­то­рой q боль­ше 1. Если вто­рой член про­грес­сии умень­шить на 12, то по­лу­чен­ные три числа в том же по­ряд­ке опять со­ста­вят гео­мет­ри­че­скую про­грес­сию. Если тре­тий член новой про­грес­сии умень­шить на 32, то по­лу­чен­ные числа со­ста­вят ариф­ме­ти­че­скую про­грес­сию. Най­ди­те сумму ис­ход­ных чисел.


Ответ:

25
Задание № 1052
i

Ре­ши­те не­ра­вен­ство  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 минус ко­рень из: на­ча­ло ар­гу­мен­та: 24 конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x плюс 6 пра­вая круг­лая скоб­ка боль­ше или равно левая круг­лая скоб­ка 5 минус ко­рень из: на­ча­ло ар­гу­мен­та: 24 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 4x плюс 25, зна­ме­на­тель: x плюс 4 конец дроби пра­вая круг­лая скоб­ка . В от­ве­те за­пи­ши­те сумму целых ре­ше­ний, при­над­ле­жа­щих про­ме­жут­ку [−20; −2].


Ответ:

26
Задание № 686
i

Най­ди­те ко­ли­че­ство кор­ней урав­не­ния  ко­си­нус x= минус \left| дробь: чис­ли­тель: x, зна­ме­на­тель: 12 Пи конец дроби |.


Ответ:

27

Най­ди­те уве­ли­чен­ную в 3 раза сумму квад­ра­тов кор­ней урав­не­ния  ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 в сте­пе­ни левая круг­лая скоб­ка 2x в квад­ра­те плюс 3x минус 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 6 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та конец ар­гу­мен­та плюс 1 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка =0.


Ответ:

28
Задание № 868
i

В пря­мо­уголь­ни­ке ABCD вы­бра­ны точки L на сто­ро­не BC и M на сто­ро­не AD так, что ALCM  — ромб. Най­ди­те пло­щадь этого ромба, если AB  =  12, BC  =  18.


Ответ:

29
Задание № 1326
i

Двое ра­бо­чих раз­лич­ной ква­ли­фи­ка­ции вы­пол­ни­ли не­ко­то­рую ра­бо­ту, при­чем пер­вый про­ра­бо­тал 3 часа, а затем к нему при­со­еди­нил­ся вто­рой. Если бы сна­ча­ла вто­рой ра­бо­чий ра­бо­тал 3 ч, а затем к нему при­со­еди­нил­ся пер­вый, то ра­бо­ты была бы за­кон­че­на на 36 мин позже. Из­вест­но, что пер­вый ра­бо­чий ше­стую часть ра­бо­ты вы­пол­ня­ет на 2 часа быст­рее, чем вто­рой ра­бо­чий вы­пол­ня­ет тре­тью часть ра­бо­ты. Сколь­ко минут за­ня­ло вы­пол­не­ние всех ра­бо­ты?


Ответ:

30
Задание № 1358
i

Пря­мо­уголь­ный тре­уголь­ник, длина ги­по­те­ну­зы ко­то­ро­го равна 5, вы­со­та, про­ве­ден­ная к ней равна 2, вра­ща­ет­ся во­круг пря­мой, пер­пен­ди­ку­ляр­ной ги­по­те­ну­зе и про­хо­дя­щей в плос­ко­сти тре­уголь­ни­ка через вер­ши­ну боль­ше­го остро­го угла. Най­ди­те объем V тела вра­ще­ния и в ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: V, зна­ме­на­тель: Пи конец дроби .


Ответ:
Завершить работу, свериться с ответами, увидеть решения.